
~ Pergamon

In I. J. So/ids Struclures Vol. 31, No.7, pp. 913-923, 1994
© 1994 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
002~7683/94 56.00 + .00

THE FUNDAMENTAL SOLUTION FOR THE
THEORY OF ORTHOTROPIC SHALLOW SHELLS

INVOLVING SHEAR DEFORMATION

PIN Lut and O. MAHRENHOLTZ
Department of Offshore Technology, Technical University of Hamburg-Harburg,

D-21073 Hamburg, Germany

(Received 24 May 1993; in revised form 12 October 1993)

Abstract-A kind oforthotropic shallow shell involving shear deformation is analysed in this paper.
The decomposed form of the governing equations of this kind of shell, as well as corresponding
fundamental solutions, are obtained. These results have many important applications in theory and
engineering problems.

INTRODUCTION

In the development of composite materials, investigations concerning the theory of ortho­
tropic or anisotropic plates and shells remain one of the principal areas of mechanics. For
shallow shells, however, many studies are still related to thin shell theory. However, for
problems of stress concentration, fracture, medium-thick as well as anisotropic shell struc­
tures, effects of transverse shearing deformation have to be considered. In the present paper
the theory of orthotropic shallow shells involving shear deformation is discussed in detail.
In this kind ofproblem, investigations are comparatively difficult because of the complexity
of the governing equations. In the paper of Delale and Erdogan (1979), a spherical shell
with a crack was discussed using the shell theory mentioned above. A more general analysis
for orthotropic shallow shells ofvariable curvature, including transverse shear deformation,
is not found in the literature, except when using a finite element approximation (Bernadou,
1993),

In the present paper, H6rmander's operator method is used initially to decompose the
governing equations oforthotropic shallow shells involving shear deformation, and a group
ofdecomposed equilibrium equations expressed by displacement functions is obtained. Then,
by using a plane-wave decomposition method and some other treatments, the fundamental
solution for an orthotropic shallow shell involving shear deformation is obtained. These
results are very important for stress and deformation analysis, as well as boundary element
analysis of orthotropic shallow shells,

TRANSFORMATION OF BASIC EQUATIONS

Consider an orthotropic shallow shell in which two principle axes coincide with the
coordinate axes Ox and Oy, respectively, and with a quadratic middle surface given by

(1)

where k 1 and k 2 are principle curvatures of the shell in the x- and y-directions, respectively.
If the effects of transverse shear deformation are considered further, the basic equations of
the shallow shell can be expressed as follows (Delale and Erdogan, 1979):

Strain-displacement relations
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ol/Jx"x =-,ox

Equilibrium equations

oNx oNxy oNxy oNy
ox + ----gy = Px> ax + oy = PY'

oQx oQy
ox + oy -(k I Nx+k2Ny)+Pz = 0,

oMx oMxy oMxy oMy _Q _
ox + -----ay- - Qx = mx, ox + oy y - my"

Stress-strain relations

Nx = B,(Sx+V2Sy), Ny = B2(sy+vlsx), Nxy = Bk'Yxy,

Qx = C1'Yxn Qy = C2'Yyz, Mx = D 1("x+ V2"y),

My = D2("y+v,,,x), Mxy = Dk"xr

(2)

(3)

(4)

Here, U, v and ware the displacements in the x, y and z directions, respectively; l/Jx and l/Jy
are the normal rotations in the xz and yz planes, respectively, due to bending; Nx, Ny, Nxy,
Mx, My, Mxy, Qx and Qy are components of generalized stresses; Px, py, Pn mx and my
are generalized distributive loads applied in different directions of the shell, respectively;
constants D" B2 and Bk are called tension stiffnesses, C 1 and C2 shear stiffnesses, and D"
D 2 and Dk bending stiffnesses, respectively, which can be obtained through the constitutive
law (see e.g. Lekhnitskii, 1963); VI and V2 are Poisson's ratios. For orthotropic materials,
the following relations exist among the elastic constants:

(5)

where h is the thickness of the shell. Inserting eqn (2) into eqn (4), the stress-displacement
relations can be obtained:

Nx = B{:: +V2 :; +(k l +V2k 2)WJ
Ny = B{;; +v, :: +(k2+v1k l)wJ Nxy = Bk (:; + ;:),

(6)
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Furthermore, substituting eqn (6) into eqn (3), we can obtain the equilibrium equations
expressed in terms of displacements:

[L]{U} = {P},

where

and [L] is a symmetrical differential operator matrix of order 5 x 5, whose elements are

L" = Vrl> L 12 = A I2DxDy, L 13 = A 13Dx, L'4 = L I5 = 0,

L n = V~2' L 23 = A 23Dy, L 24 = L 25 = 0, L 33 = V~3'

L 34 = -CIDx, L 35 = -C2Dy, L 44 = V~4' L 45 = A 45DxDy,

L 55 = V~5'

where

(7)

(8)

(9)

A 12 = B1V2 +Bt. A 13 = Bl(k l +V2k2), A 23 = B2(k2+vlk l ),

A 33 = Blkr+B2k~+2BIV2klk2' A 45 = DIV2+Dk>

and Dx , Dr V~ (i = 1,2, ... ,5) are partial differential operators given by

a a 2 2 2
Dx = ax' Dy = ay' V'I = B1Dx+BkDy,

V~2 = BkD;+B2D;, V~3 = A 33 -(C,D;+C2D;),

V~4 = DID;+DkD;-CI> V~5 = DkD;+D2D;-C2.

(10)

(11)

Since the partial differential equations (7) are coupled, it is very difficult to solve them
directly. By using Hormander's operator method (Hormander, 1963), eqns (7) can be
decomposed. For this reason, we define the following displacement functions:

which satisfy the relation

{U} = [F]{c()},

(12)

(13)

where the symmetric differential operator matrix [F] is the accompanying matrix of [L],
whose elements are

where

F II = V~2Jg-A~3J4D;, E I2 = (AI3A23J4-A'2Jg)DxDy,

F I3 = J3J4, F I4 = -J3J 6 , F I5 = J3J5, En = VrIJg-Ar3J4D;,

E23 = -J2J4, E24 = J2J 6 , E25 = -J2J 5, E33 = J 1J4,

F 34 = -JIJ 6 , F 35 = J IJ 5, F44 = V~5J7-C~JID;,

E45 = (CIC2JI-A45J7)DxDy, F 55 = V~4J7-CrJID;,

J I = VrIV~2-Ar2D;D;, J2 = A23VrIDy-AI2A13D;Dy,

J3 = AI2A13DxD;-AI3V~2Dx, J4 = V~4V~5-A~5D;D;,

(14)
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J s = C2V~4Dy-C1A4SD;Dy, h= C2A4SDxDJ-C1VLDx,

J 7 = ViI V~2V~3 +2AI2A13A23D;DJ -A~3ViIDJ-A 13V~2D;-Ai2V~3D;DJ,

J s = V~3V~4V;5 +2C1C 2A 45D;DJ -A~5V~3D;D;- C~V~4D; -CiV~sD;. (15)

Substituting eqn (13) into (7) and noting the definition of matrix [Fl, we have

2{eIl} = {P}, (16)

where 2 is a differential operator given by the determinant of the operator matrix [LJ and
given by

(17)

In this way, the coupled equations (7) have now been reduced to a set of uncoupled
equations for five displacement functions. Let <II(x,Y) be the fundamental solution of the
differential operator 2, i.e.

2(<11) = <>(x,y), (18)

where o(x,y) is the Dirac o-function. Then the particular solutions to eqns (16) can be
expressed in the form

(19)

Once <IIj(x,y) is known, the displacements can be determined from eqn (13) and the
generalized stress resultants can be obtained from relations (6) :

where

{T} = [RJ{ell}, (20)

(21)

and the elements of the differential operator matrix [RJ are listed in Appendix 1.
Suppose a set ofconcentrated load components is acting on a point (xo, Yo) of the shell

in different directions:

Pi = PjJ(x-xo, y-Yo) (j = 1,2, ... ,5).

Inserting eqn (22) into (19) yields

(22)

(23)

Substituting the above expressions into eqns (13) and (20), we can therefore take the stress­
strain analysis for orthotropic shallow shell members acted upon by concentrated forces.
Moreover, the fundamental solution <II(x,y) can also be used to construct the kernels of
boundary integral equations for BEM analysis (Lu and Huang, 1992).

FUNDAMENTAL SOLUTION <Il(x,y)

The analysis of the above section reduces the effort to find the fundamental solution
4>(x,Y) restricted byeqn (18), i.e.
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(24)

This is a tenth order partial differential equation and can be transformed to an ordinary
differential equation to be solved by using the plane-wave decomposition method (Gel'fand
and Shilov, 1966).

For two-dimensional problems, let

where (WI> (2) are the coordinates of a point on the unit circle:

WI = cos 8, W2 = sin 8.

Therefore, c5(x,y) can be expressed as (Gel'fand and Shilov, 1966):

I f2"
c5(x,y) = - 41t 2 Jo Ipl-2 dO.

The fundamental solution <I>(x, y), written in the following form,

f2"
<I>(x,y) = Jo cp(p)dp,

(25)

(26)

(27)

(28)

is called the plane-wave representation of the fundamental solution. Substituting eqns (27)
and (28) into eqn (24), and taking note of the following relations:

(29)

we can obtain, after proper simplifications, the following tenth order ordinary differential
equation:

where

ao = -K3Q\Q2> a\ = Q2(A 33Ql +Q7)+QI(K3Q3+Q6),

a2 = Q3(A 33 QI+Q7), a3 = C\C2(A 33 Q\+Q7);

(30)

(31)

the coefficients K.i (j = 1,2, ... , 5), Qj (j = 1,2, ... ,9) are listed in Appendix 1. After four
integrations for eqn (30), we have

(32)

The above equation can be further written as

(33)

SAS 31:7-8
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where ri, d and d are the roots of the equation

and are given in Appendix 2. The particular solution of eqn (33) can be written as

3

cp(p) = L [Jj(p) erjP +gj(p) e- rjP ],
j~ t

(34)

in which the functions jj(p) and gj(p) can be obtained by the method of variation of
parameters (Ye and Xu, 1978):

(j = 1,2,3), (35)

where

(36)

(38)

Substituting eqn (35) into (34) and after proper simplifications we have

cp(p) = p 2 1n Ipl jtt rJAj + (2 In Ipl +3) jt Aj + jt Aj [ erjP f' e:/r

dO'-e- rjP f", e;" dO'J.
(37)

The integrals in the above equation can be expressed by an exponential integral E1(z)
(Abramowitz and Stegun, 1966)

fJe:J" dO' = E t(rjp) + ~ {1-Sgn[Re(rjp)]}Sgn[Im(rjp)],

f", e;" dtr= -Et(-rjp)+ ~{I+Sgn[Re(rjp)]}Sgn[Im(rjp)],

where sgn (x) is the sign function, and Re (.) and 1m (.) are the real and imaginary parts of
complex variables, respectively. Equation (37) can be rewritten as

3 3 3

cp(p) = p 2 1n Ipl L r]Aj +(2Inlpl+3) L Aj + L A/xip),
j= t j= 1 j~ 1

(39)

where

Xj(p) = erjP El(rjp)+e-rjP E t( -rjp)+in {sinh (rjp)

-cosh (rjp) sgn [Re (rj p)]} sgn [1m (rjp)] (j = 1,2,3). (40)

According to the series expansion of the exponential integral (Abramowitz and Stegun,
1966), eqn (39) can also be expressed in the form of a series expansion. Let
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I
Re (rj ) I .

r:Lj = arctan 1m (r) (j = 1,2,3);

the arguments of the complex variables ± rj P can therefore be written as

919

(41)

Expanding the exponential integrals and the hyperbolic functions in eqn (40) in series and
noting eqn (42), we can obtain after proper treatment

X/p) = -2{Y+ln Irjpj +{~ -r:Lj)sgn [Re (rjp)J sgn [1m (rj p)]}

00 (rjp)2m 00 (rj p)2m
x m~o (2m)! +2 m~o (2m)! l{I(2m+ I) (j = 1,2,3), (43)

where

m I
l{I(m+ 1) = L -, l{I(1) = 0,

s= I S
(44)

and Y = 0.51721 is Euler's constant. Substituting eqn (43) into eqn (39) and deleting
polynomial terms in P and p 2

, we obtain

(45)

where

(46)

Substituting eqn (39) or eqn (45) into eqn (28), the fundamental solution of eqn (24) can
be obtained, in which the definite integral (28) may be solved by numerical integration.
Therefore, according to eqn (19), the plane-wave representations of the displacement
function are

cI>j(X,y) = f" <pj(p) dO = f" [f f<p(p)p/",,) d' d"] dO U= 1,2, ... ,5), (47)

where p = (X-O cosO+(y-tf) sinO. In particular, when a set of generalized unit con­
centrated forces is applied to a point of the shallow shell in different directions, the
displacement functions are simply <pj(p) = <p(P) (j = 1,2, ... ,5). Furthermore, according to
eqns (13) and (20), the plane-wave representations of the displacements and the generalized
stresses can be also expressed as

where

[2" [2"
{U} = Jo {O} dO = Jo [F}{<p} dO,

[2" (2"
{T} = Jo {f} dO = Jo [RJ{tp} dO,

(48)

(49)
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(50)

and ~ and [I] are differential operator matrices composed of differential operators dk /dpk

(k = I, 2, ... ,9) ; the corresponding elements are given in Appendix 1.

COMPUTATIONAL CONSIDERATIONS

As shown before, it is necessary to compute cp(P) and its derivatives (dk /dl)cp(p)
(k = 1,2, ... ,9) during the computation of the displacements and the generalized stresses.
We define the function Aj(P) as follows:

Aj(p) = e'jP E1(rjp)-e-'jP E 1( -rjp)+in {COSh (rjp)

-sinh (rjp) sgn [Re(rj p)]} sgn [1m (rjp)] (j= 1,2,3). (51)

According to the derivative property of the exponential integral (Abramowitz and Stegun,
1966), we have

(52)

where 'X,j(P) is given by eqn (40), and the following relation can also be obtained:

Moreover, by using the relations of eqn (36) and Appendix 2, we can obtain

(53)

3 3

L rfAj = L rJAj = 0,
j= I j= I

311
L rJAj = --82-'
j= I n ao

(54)

where ao, a2 and a3 are given by eqn (31). Therefore, combining eqns (39), (40) and (51)­
(54), we have

3 3 3

cp(p) = (2Inlpl+3) L Aj +p2 ln lp l L rJAj + L Aj'X,j(P),
j= I j= 1 j= 1

(55)

Now, the problem of calculating the derivative values of the fundamental solutions is
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reduced to evaluating the values of 'Xj and Aj (j = 1,2,3), which is easier from the com­
putational point of view.

The series form of the function 'Xj(p) can be expressed according to eqns (43) and (46)
as

Substituting the above equation into eqn (53), after proper arrangements, we have

(56)

(j= 1,2,3). (57)

If Irjpl < I, the convergence rate is fast by using eqns (56) and (57) for the evaluation of
'Xj and Aj. If Irjpl is large, eqns (40) and (51) have to be used to compute the functions 'Xj
and Aj • In this case, the problem of numerical computation for the exponential integrals
E 1(rjp) and E 1( -rjp) will be encountered, which has been discussed in detail by Lu and
Huang (1991).

To calculate displacements and generalized stresses, the following integrals will be
treated:

Ok+lcl>(X,y) j21t k . I dk+l<p(p)
oxk oyl = Jo cos 0 sm 0 dpk+l dO (k, 1= 0, 1,2, ...). (58)

This can be calculated by sub-region Gaussian numerical integration, in which the values
of <p(p) and its derivatives can be obtained in eqn (55). Detailed treatments are given by
Lu and Huang (1991). Numerical examples and the extension to boundary element analysis
will be given in another paper.

CONCLUSIONS

In the present paper, a set of uncoupled equilibrium equations for orthotropic shallow
shells involving shear deformation is derived. The fundamental solution for the shells is
obtained, and corresponding computational formulations are given. The method can be
used in stress-strain analyses for composite, rib-shell structures etc. The fundamental
solutions derived in this paper can also be used to construct the kernels of boundary integral
equations, which are essential work for BEM analysis.

In addition, the treatments for decomposing governing equations with H6rmander's
operator method and constructing fundamental solutions with the plane-wave decompo­
sition method, which are used in this paper, can also be extended to analyses of anisotropic
plate and shell structures. It is an effective method of treating complex mechanics problems.
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APPENDIX I

The elements ofdifferential operator matrix [R] are

RIj = B,[FtjDx+V2F,jDv+{KI +V2k2)F3A,

R 2j = B2[v,FIjD<+ F2jDv+{K2+V,k,)FJj],

R Jj = Bk[FtjDy+F2jDx], R4j = CI[F3jDx+F4j],

R Sj = C2[F3jD.+Fsj), R 6j = D,[F4jDx+V2FsjDy],

R7j = D,[v I F4jDx+FsjDy], R Sj = DdF4jDy+FsjDxl U= 1,2, ... ,5),

where the differential operators FIj are given byeqn (14).
The coefficients Kj and Qj are defined as

K , = B,wr+BkW~, K2= BkWr+B2W~, KJ = C,Wr+CkW~,

K4 = D,Wr+DkW~, Ks = DkWr+D2W~,

QI = K,K2-Ar2WrW~, Q2 = K4Ks-A~swrw~, QJ = C2K4+CIKs,

Q4 = C2K4-C,A4Swr, Qs C2A4SW~-C,Ks,

Q6 = 2C,C2A45wrw~-qK4w~-CrKswr,

Q7 = 2AI2AI3A2Jwrw~-AhK,w~-A1JK2Wr,

Qs = A 23K I-A n A IJwr, Q9 AI2AIJW~-AI3K2'

where A Ih A 13' AJ3 and A4S are given by eqn (IO). Let

d dk

D - D k
-P-dp' P-dpk'

Therefore, the elements of differential operator matrices [t] and [I] are

FII = -K2K3Q2D;+[K2{AJ3Q2+Q6+KJQ3)-A~JQ2W~]D;

+QJ{A~3W~-K2A33)D:+CIC2{AJ3K2-A~JwDD;,

F'2 = F21 = wlw2[A,2K3Q2D;+{AI3A2JQ2-AdA33Q2+Q6+K3Q3»D;

+ Q3{A nA33 -A 13A23)D: +C IC2{A 13AB -A nA33)D;],

F13 = F31 = Q9WI[Q2D:-Q3D~+CIC2D:],

F14 = F41 = -Q9w1[QsD;+C,C2D:l, Fis = FSI = Q9W,W2[Q4D;-C,C2D:],

F22 = -K,K3Q2D;+[K,{A33Q2+Q6+K3Q3)-A13Q2WrJD;

+QJ(Ar3Wr -K,A33)D:+C,C2(A33K,-Ar3WDD;,

F2J = F32 = -QSW2[Q2D: -Q3D~+C,C2D:], F24 = '42 = QSWIW2(QsD;+C,C2D:],

F2S = FS2 = -Q.wHQ4D;-CIC2D;], F3J = Q,(Q2D;-Q3D;+C,C2D:],

F34 = F43 = -Q,w,[QsD:+C,C2D~], '3S = FH = QIW2[Q4D:-C,C2D~],

F44 = -K3KsQID;+[Ks{A33Q, +Q7)+C2Q,{K3-C2WDlD;-C2{A33QI +Q,)D:,

F45 = F54 = w,w2[A45K3QID;+(CIC2Q,-A45{AJ3QI +Q7»D;),

F55 = -K3K4Q,D;+[K4(A33Qt +Q7)+CIQ,(K3-CtwmD;-C,(A 33Q,+Q7)D;,

and

Rtj = Bt[WIFljDp+V2W2F2jDp+(kl+V2k2)F3j],

R2j = B2[v,w IFIjDp+W2'2jDp+ {k2+ v,k,)F3j],

R3j = Bk[W2F,j+wIF2j]Dp, R4j = C,[w,'3jDp+'4j],

RSj = C2[W2F3jDp+F5j], R6j = D,(W,'4j+V2W2FSj]Dp,

R7j = D2[V,WI'4j+W2F5j)Dp, RSj = Dk[W2'4j+wtFsADp U= 1,2, ... ,5).
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APPENDIX 2

For the equation

let

z=r2
, A,=aJao (i= 1,2,3).

Then, eqn (AI) can be written as

923

(AI)

(A2)

(A3)

this is a cubic algebraic equation and its solution can be discussed according to Abramowitz and Stegun (1966).
Let

(A4)

Thus, when q3+p2 > 0, eqn (A3) has one real root and a pair of complex conjugate roots; when q3+p2 = 0, all
roots are real and at least two are equal; and when q3 +p2 < 0, all roots are real.

Furthermore, let

then the three roots ofeqn (A3) can be written as

A.
z. = (SI+82)-3'

I AI i-J3
Z2 = -2(8.+82)-3+2(81-82),

1 A. i-J3
Z3 = - 2(8. +82) - 3 - -2-(81 -82),

and

Therefore, the solution of eqn (A I) is

(AS)

(A6)

(A7)

(A8)


